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Abstract. Point defects in crystals with cubic local symmetry in a Jahn-Teller electronic ”+ IT 
term with significant spin-orbit coupling are shown to have additional intrinsic spherical 
symmetry and additional integrals of motion if the conditions of the d-mode model (equal 
frequencies and equal vibronic coupling to E and T, vibrations) are satisfied. As in the case 
without spin-orbit interaction considered by O’Brien for strong vibronic coupling, taking 
into consideration the isotropic spin-orbit coupling in the Jahn-Teller multimode 
2s+ IT 8 ( E  + r 2 )  problem, the lowest sheet of the adiabatic potential energy surface is shown 
to possess a two-dimensional trough. This determines the characteristic rotational energy 
spectrum of the system. If the conditions of the d-mode model are violated the trough 
becomes warped and rotations become hindered, and this is represented by appropriate 
changes in the rotational energy spectrum. 

1. Introduction 

The diverse properties of polyatomic systems in degenerate or pseudo-degenerate 
electronic states are determined by the Jahn-Teller effect (e.g., Bersuker 1984a). Point 
defects in high-symmetry crystals are the most characteristic examples of such systems. 
This stimulates increasing interest in the basic theory of the Jahn-Teller effect and for 
the interpretation of numerous experimental data accumulated in the physics of point 
defects in crystals. The current situation in the theory of the Jahn-Teller effect is 
discussed in several monographs and review articles (see, e.g., Perlin and Wagner 1984, 
Bersuker and Polinger 1989). An exhaustive bibliography of the papers published up to 
1979 has been compiled by Bersuker (1984b). 

The Schrodinger equation containing the vibronic matrix Hamiltonian describing a 
Jahn-Teller system can be reduced to a complicated set of differential equations whose 
analytical solution is possible in the limiting cases of weak and strong vibronic coupling. 
The analysis of these solutions shows that they describe hindered rotations of the coupled 
electron-phonon formation of the polaron type around the point defect. In the case of 
strong vibronic coupling, if the lowest sheet of the adiabatic potential energy surface 
(APES) possesses several sufficiently deep minima, the motion of the system is reduced 
to the tunnelling of the Jahn-Teller polaron between several equivalent positions 
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through the potential barriers separating the minima from one another. However, the 
theory considers mainly the simplest cases of the so called ideal vibronic systems with 
the orbital doublet (E term) or triplet (T term) electronic states coupled to one set of 
two-fold or  three-fold degenerate vibrations without taking into account the effects of 
phonon dispersion and the spin-orbit interaction. If the latter is sufficiently weak, it can 
be considered as a perturbation in terms of the vibronic reduction factors (Ham 1965; 
see also Bersuker 1984a, Bersuker and Polinger 1989). This is the case, for instance, in 
cubic systems with the two-fold degenerate E term because the first-order effects of the 
spin-orbit interaction are absent due to the appropriate selection rules for the matrix 
elements. Unlike the case of systems with the T term, the effects of the first-order spin- 
orbit interaction are non-zero and may be significant compared with the effects of the 
vibronic interaction. This causes additional difficulties when considering the Jahn-Teller 
effect for the T-term systems because both the spin-orbit interaction and the vibronic 
coupling to the E and T2 vibrational modes should be considered together, and there is 
no hierarchy of perturbations. 

Basic ideas about the vibronic properties of the ideal T €3 ( E  + z2) system without 
any spin-orbit interaction have been formulated by O’Brien (1969, 1971). It was shown 
that if the Jahn-Teller stabilisation energies EjT(E) and EjT(T) are equal and if the 
frequencies of the E and T, vibrations are also equal, oE = wT (the so called d-mode 
model), then the lowest sheet of the APES possesses a two-dimensional continuum of 
minima (trough) and the energy spectrum corresponds to free rotations of the rep- 
resentative point at the bottom of the trough. If EjT(E) # EjT(T) and/or oE # wT, 
then the rotation becomes hindered. These conclusions were confirmed by numerical 
calculations (O’Brien 1971, 1985), but they are not adequate for a number of exper- 
imental data because the spin-orbit interaction has been neglected in some cases where 
it is significant. 

The aim of this paper is to solve the 2St1T €3 ( E  + z2) problem by taking into con- 
sideration a significant isotropic spin-orbit interaction AL - S .  In this sense the present 
paper considers a wider class of problems, including the spin-orbit coupling for a T-term 
Jahn-Teller effect. The problems seem to be more realistic than the case considered by 
O’Brien (1969, 1971). Although initially the problem under consideration looks much 
more complicated than that in O’Brien’s case, we have succeeded in showing that it can 
be understood in the same terms as those developed by O’Brien (1969). 

The effects of the multimode vibronic coupling will also be considered and will be 
shown to produce qualitatively the same energy spectrum of the hindered rotations as 
in the case of an ideal vibronic system. 

2. Dynamic symmetry of the multimode €3 ( E  + T ~ )  system in the d-mode model 

Consider a point defect in a cubic crystal in a triplet electronic state 2S+1T, The Ham- 
iltonian of the electronic triplet can be written 

= H L  + f i s  f &SO f f i v i b r  + H J T .  (1) 

Here A, = E p )  CA is the electronic Hamiltonian of the degenerate T term with energy 
Ek’), eA being a unit 3 X 3 matrix acting in the manifold of degenerate electronic states; 
f i s  =Aconstant x s2 is the Hamiltonian of the free spin; s2 = Sz + s; + sz, where sx, sy 
and S ,  are the (2s + 1) x (2s + 1) spin matrices. Both HL and are usually excluded 
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from consideration by an appropriate change of the energy reference. The third term in 
equation (I) ,  f iso = A L  - S ,  is the Hamiltonian of the isotropic spin-orbit interaction, 
where i,, L, and t, are the 3 x 3 matrices of the orbital moment acting in the electronic 
part of the system: 

0 0  O O i  0 -i 0 

L,  = (o o o -i :I L y = ( - ;  ; 
L z = ( :  ," ;) ( 2 )  

and A is the spin-orbit coupling constant. The fourth term in equation ( l ) ,  is the 
Hamiltonian of the lattice vibrations which can be expressed in terms of the real normal 
coordinates: 

Here the sum over K includes all the phonon wavenumbers and phonon branches. The 
last term in equation (1) is the Hamiltonian of the linear Jahn-Teller coupling of the 
localised 2 S +  'T electronic states to the symmetrised nuclear displacements Qr, of the 
nearest-neighbour atoms (Ham 1965) 

&JT= v ~ ( Q e c 0  + Q&c,> + V ~ ( Q g c j  + Q q C q  + Qcec)  (4) 

where V, and V, are the constants of the linear vibronic coupling to the E and T2 
displacements respectively and Cry are orbital operators, which can be expressed in 
terms of the orbital moment L = 1 matrices (Stevens 1969): 

e(3 = i(3L; - 2) 

cj = { L y ,  t,} 
e& = (v3/2)(L: - L; )  

( 5 )  cv = {L,, L,} cg = {L,, L,}. 
Here {ij, Lj} = LiLj + i j L i ,  i # j .  The symmetrised displacements Qry are related to the 
normal coordinates qK by the orthogonal transformation 

K 

where aK(Ty)  are the so called Van Vleck coefficients (Halperin and Englman 1975, 
Steggles 1977, Stevens 1969). 

The Hamiltonian (1) can be transformed into another form (Toyozawa and Inoue 
1965, Bersuker and Polinger 1989): 

where r = E,  T,, y E r and 

Note that wnE = wnT = w, and the E and T2 modes can be considered together as a five- 
dimensional oscillator of frequency w,. The vibronic coupling to the E and T, modes can 
be treated as a low-symmetry (cubic) case of an isotropic interaction of electronic triplets 
of an atomic-type P term with five-fold degenerate vibrations possessing the trans- 
formation properties of hydrogen d functions. It follows that this P@d problem is a 
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particular high-symmetry case of the cubic symmetry TC3 ( E  + z2) problem in which the 
cubic splitting of the d mode is negligible. This is the so called d-mode model (O'Brien 
1969). 

It will be shown that by taking into consideration the isotropic spin-orbit interaction, 
the spin-orbit-vibrational moment 9 = S + L + 9 is preserved and the Hamiltonian of 
the coupled 2s+1P 8 d system possesses spherical symmetry. 

The problem can be investigated by the method of infinitesimal operators (Bersuker 
and Polinger 1982). In the absence of spin-orbit and vibronic coupling, the symmetry 
of the Hamiltonian (7) is described by a continuous group of unitary transformations in 
the combined spin-orbit-vibrational space. It can be expressed as a direct product 

G = u(3) x u(2s + 1) x I1 u([r,]) 

where [r,] is the dimension of the representation r,, where n labels the irreducible 
representations of the same type r. The unitary group U(3) corresponds to the symmetry 
of the system with respect to the unitary transformations in the space of the three 
degenerate states of the electronic T term. The unitary group U(2S + 1) describes the 
symmetry of the free spin S ,  and contains unitary transformation in the space of the 
2S + 1 spin states. The unitary groups U([r,]) correspond to the unitary symmetry of 
the five-fold degenerate oscillators (all the [r,] = 5). Generators of the group U(3) are 
nine 3 X 3 matrices of the following form: 

are the basis states of the electronic P term. 
Analogously, the unitary group U(2S + 1) has (2s + 1)2 generators of the form 

la)(pl, where 10) and lp) are spinors. 
The unitary symmetry of the vibrational system is more conveniently described in 

terms of the second quantisation creation and annihilation operators, biry and bnry. The 
vibrational Hamiltonian Hvlbr commutes with the operators b,+rybnry8 , and therefore the 
latter can be used as generators of the symmetry group of Hvlbr. Groups U(2S + l), U(3) 
and U(5) contain as a subgroup the group of rotations in three-dimensional space, R(3). 
With respect to these rotations the above-mentioned generators of the unitary groups 
are tensors of the second rank which can be combined into some linear combinations 
that transform as irreducible representations of the group R(3). The appropriate com- 
ponents of the irreducible tensors are determined by the following expressions: 

{P x @Ih = c, IP4(~plqlLM),  (8) 
P.4 

wherep, q = -1, - I  + 1,. . . , I; L = 0,1, .  . . ,21; and (IplqILM) are the Clebsch-Gordan 
coefficients of the R(3) group. An operator of the group 

G = u(3) x u(2s + 1) x fl u([r,]), 
n 

depending on 9 + (2s + 1)2 + 25Nfree parameters aJ, Bj"), y,, can be written 
4 ( 2 S +  I ) ?  - 1 

where ej, tjn) and Sj are the generators of the groups U(3), U(5) and U(2S + 1) 
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respectively obtained by (8). Among the parameters a,, pi"' and y, there are three, 
namely ao, and yo, that correspond to trivial operations of multiplication of the 
wavefunction by aphase factor and therefore the appropriate generators can be excluded 
from consideration by taking a. = = y o  = 0, thus reducing the symmetry to 
SU(3) x SU(2S + 1) x II,SU([r,]). The vibronic interaction lowers the symmetry of 
the system, and some of the parameters a,, pj") and y, ( j  f 0) become interrelated. These 
interrelations can be obtained from the condition of commutativeness of the group 
operators (9) with the Hamiltonian (1). For small values of a,, pjn) and y,, the operator 
G from (9) can be expanded with respect to a,, p?) and y,. Retaining the linear terms 
and taking into consideration the commutativeness of G with the Hamiltonian (7) at 
A = 0, V, = 0 and VT = 0, we obtain the following equation: 

K? n ] = 1  , = 1  n r y  

Taking into account the independence of the different generators cl, Lj") and g,, a 
system of equations with respect to a,, pl.1 and y, can be obtained which has a non-trivial 
solution if 4v,& = 3VEE for every n. All the parameters a,, and y, can be expressed 
in terms of ax, ay and az, and the group operator of (9) takes the form 

8 24 (2S+ 1 ) 2  - 1 

a,e, + 2 2 pjn)Ljn) + 2 U,$,) (AL * S + 2 2 VnrQryCry)]  = 0. 

G = exp(ia8) (10) 
where 

$ = S + L + 6 4  

= [ b i , ( f i b n o  + bnE) - bnE(fibi0 + hie) + b,fbn, - biqbnc] 
n 

It follows that by taking into consideration the linear vibronic interaction and isotropic 
spin-orbit coupling, the symmetry of the system is reduced from the group 
SU(3) x SU(2S + 1) x II,SU([r,]) to the three-parameters group R(3). The operators 
$,, $ y  and $, from (11) are constants of motion and represent the components of the 
resulting moment of rotations in the united spin-orbit-vibrational space. 

In the limit of strong vibronic coupling, the lowest sheet of the APES at the minimum 
points may in several cases be separated from the higher sheets by a large energy gap. 
In this case the applicability criteria of the adiabatic approximation are fulfilled and 
the lowest sheet acquires the physical meaning of the potential energy of the nuclei. 
Calculating the diagonal matrix element of 8 with the adiabatic electronic wavefunction 
of the lowest sheet, and taking into account that for the ground sheet the averages of L 
and S are equal to zero, one obtains a constant of motion which takes the form of 2. 
From the three constants of motion, Yx ,  2'y and Y z ,  only two combinations Y2  and ZZ 
commute. This means that in the limiting case of strong vibronic coupling, when the 
adiabatic separation of the nuclear motion from the electronic motion is valid, the 
generalised coordinates conjugated to the vibrational momenta y2 and TZ are cyclic 
variables. Hence the lowest sheet of the APES possesses a two-dimensional continuum 
of equipotential points and, in particular, in the limiting case of strong vibronic coupling 
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when the Jahn-Teller destabilising forces are stronger than the stabilising effect of the 
spin-orbit coupling, the lowest sheet of the APES possesses a two-dimensional trough. 
Nuclear motion at the bottom of the trough is thus reduced to free rotations. This 
result is understandable because the isotropic spin-orbit coupling does not reduce the 
symmetry of the system as a whole and hence the lowest sheet of the APES consists of a 
trough whether or not the spin-orbit coupling is taken into consideration. Thus, includ- 
ing the isotropic spin-orbit interaction gives for the 2St1P E3 d problem results similar 
to those of O’Brien (1969) obtained without the spin-orbit coupling. The spin-orbit 
coupling changes the sequence of the excited electronic states and the sheets of the APES 
as well as the appropriate energy gaps. It also changes the parameters of the trough, 
for example, its radius. Another problem is how the spin-orbit coupling changes the 
quantisation rules for the rotational motion at the bottom of the trough. 

The above group-theoretical consideration is a general one in the sense that it relates 
equally to every spin multiplicity, ’T, 3T, 4T, etc. In the next section we shall show in an 
explicit form using the approach of O’Brien (1969) that the lowest eigenvalue of the 
potential energy matrix of a ’T term (the lowest sheet of the APES) in the d-mode model 
does not in fact depend on the angular variables, the latter being the cyclic coordinates. 
Within the same approach the quantisation rules will be determined for the rotations 
along the two-dimensional trough. As a result a conclusion will be drawn about a 
characteristic energy spectrum of free internal rotations in Jahn-Teller ‘P €3 d systems 
with isotropic spin-orbit interactions. 

3. Vibronic energy spectrum of the free rotations in the case of ’P E3 d 

The character of the nuclear motion is determined by the shape of the lowest sheet of 
the APES if the adiabatic separation of the nuclear motion from the electronic motion is 
justified. As is known, the necessary condition of such an adiabatic approximation is the 
smallness of the energy gaps in the nuclear energy spectrum compared with the energy 
separation of the ground sheet of the APES from the upper sheets. This condition can 
undoubtedly be satisfied in the limiting case of strong vibronic coupling for the spin 
multiplicity 2s + 1 = 1, i.e. S = 0 (the case considered by O’Brien (1969)), and 2S + 1 = 
2, i.e. S = f, that is for the case of 2T E3 ( E  + z2). Unfortunately, for larger values of S 
we have to deal with a small energy separation of the ground sheet of the APES at the 
minimum points from the upper sheets and the usual adiabatic approach becomes 
doubtful. Therefore, as distinct from the cases S = 1, $, 2, etc, the adiabatic separation 
of the motions for S = t does not need special consideration and can be treated in the 
same way as O’Brien (1969) treated S = 0. 

In this connection it is necessary to stress that the Jahn-Teller cases 3T E3 ( E  + t2),  
4T E3 ( E  + t2), 5T E3 ( E  + t2 ) ,  etc, do not provide any understanding of the physical 
picture because the adiabatic separation of the nuclear motion, the only reference point 
in the limiting case of strong vibronic coupling, remains unknown. 

A quantitative description of a ’T E3 (E + t2 )  system can be performed under the 
same assumptions of the d-mode model as in O’Brien’s (1969) ‘T E3 ( E  + z2) case. As 
was shown above, the Hamiltonian of such a 2P E3 d system with an isotropic spin-orbit 
interaction is invariant under three-dimensional rotations. Let x, y ,  z be the direction 
cosines determining the orientation of a radius vector under such a rotation. They 
transform as the rows of the vector’s irreducible representation, D,, and satisfy the 
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equation x2  + y 2  + z2  = 1. In other words, they map onto the surface of a unit sphere in 
three-dimensional space (see figure 1 of O’Brien (1969)). 

and 2P3,2. Both are 
mixed by the vibronic interaction. As the Hamiltonian of the vibronic interaction, fiJT 
from (4), is a scalar of the reference symmetry group, the group of three-dimensional 
rotations, the adiabatic electronic wavefunctions belong to one of the representations 
of this group. Let it be the Kramers doublet representation, Dip. This results from 
multiplication of 2P,/2 = D1p and 2P312 = D3,* with the D1 = { x ,  y ,  z }  representation: 
D112 x D, = D1/? + D312; D312 x D, = Dl,? + D3/2. + D512. In the general case it should 
be a linear combination of the appropriate irreducible convolutions. Using the Clebsch- 
Gordan coefficients one obtains the following adiabatic electronic wavefunctions of the 
lowest sheet of the APES: 

18) = A [ - ( i / a ) ( x  + i y ) / i ,  -2) - (i/d?)zI$, A)] + B[-(i/V%)(x + iy)l#, -2) 

The spin-orbit interaction splits the 2P term into two terms, 

+ (i/2)(x - iy) I # ,  i) - (i/V?)zIi, 211 

+ ( i /VE)(x  - i y ) / i , i )  - (i/V?)zli, -;)I. 

(12) 

I-*) = A [ - ( i / a ) ( x  - iy>ld,f)  + (i/V?)zli, -h)] + B[-(i/2)(x + iyli, -4) 

(13) 
Here l j ,  m) are the spin-orbit electronic wavefunctions of the *P term diagonalising the 
spin-orbit Hamiltonian f i so  = AL * S .  A and B are free coefficients. 

To find the extremum pointsof the lowest sheet of the APES one can use the procedure 
developed by Opik and Pryce (1957). According to this procedure the following system 
of coupled equations has to be solved: 

U i a )  = &la) 

(a /ao /aQnp ,  la) = 0 (14) 

(ala)  = 1 

where I a)  is an eigenvector of the potential energy matrix (cf equation (7)) 

1 
U =  A L - s  +-C w t  C Q ; ~  + C V ,  C enye,. (15) 

2 n  Y n Y 

In the d-mode model wnE = onT = wnLVnE = 2 v , , T / ~  = V ,  , and e,, e, and C, differ 
from the matrices ( 5 )  by the factor V 3 / 2 .  The angular dependence of the elements of 
the column matrix la) via the direction cosines x ,  y and z is given by (12) and (13). In 
other words, one looks for the solution of equations (14) in the form of (12) or (13). 
Substituting this column vector la) into the second equation in (14), one obtains the 
equilibrium coordinates of the trough: 

QlPQ = Qio’(-x2 - y 2  + 22’) 

QlP,‘ = Q i o ’ f i ( x 2  - y ’ )  

QiY = Q L o ) 2 f i y z  

QLY = Qk0 ’2 f i xz  

Q $ = Q (p)2fixy 
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where 

Qko) = ( V n / 1 2 w ; ) B ( B  - 2V5A). 

Note that these coordinates possess the same transformation properties as in the simpler 
case of O’Brien (1969). From the last equation in (14) one obtains the normalisation 
conditionA2 + B 2  = 3. 

Substituting the coordinates e,,, from (16) into the potential energy matrix (15), one 
can easily verify that the electronic wavefunctions (12) and (13) are the eigen-functions 
of U and its eigenvalue does not depend on the direction cosines x ,  y and z .  This 
circumstance alone confirms the above statement that the lowest sheet of the APES 
possesses a two-dimensional trough and the angular variables 8 and rp (x = sin 8 cos rp, 
y = sin 8 sin rp, z = cos 0 )  are cyclic coordinates. The angular coordinates cancel from 
the system of coupled equations originating from the matrix equation 01 a)  = E I a). The 
only unknown parameters to be found remaining in the system of equations are A and 
B .  This can be done by taking into account the normalisation condition A2 + B2 = 3; the 
final expressions are very large and it is not necessary to give them here. 

The cyclic variables describing free rotation of the representative point along the 
trough can be separated from all the other variables, and it follows that every vibrational 
energy level is accompanied by a rotational structure of energy levels described by the 
Hamiltonian 

where 9 is the resulting spin-orbit-vibrational moment defined in (11) and 
I o  = ZnnrvQ iy; is the appropriate moment of inertia at the bottom of the trough: 

By averaging the Hamiltonian (18) with rotational states one obtains E,,, = h2j(j + 1)/ 
2Z0, where j is the quantum number of operator 9. Hence it follows that the rotational 
energy levels are arranged in the sequence of energy increasing with j .  

The quantisation rules can be obtained from the unambiguity condition of the 
vibronic wavefunction. In the adiabatic approximation this has a multiplicative form, 
W ( r ,  Q) = q ( r ,  Q ) Q ( Q ) ,  where q ( r ,  Q)  is the electronic wavefunction of the lowest 
sheet of the APES determined in (12) and (13) and Q ( Q )  is the eigen-function of the 
rotational Hamiltonian (18). 

As can be seen from (12) and (13), the inversion in the space of the angular variables, 
x+ - x ,  y + - y ,  z + - z ,  changes the sign of the adiabatic wavefunctions rpo(r, Q ,  ‘8) 
and multiplies the rotational wavefunctions Yjm by the factor (- l)’, similarly to O’Brien’s 
simple case without spin-orbit coupling. Therefore in order to keep the total function 
rpOYjm unchanged, only odd values o f j  have to be retained. From this it follows that the 
ground rotational state corresponding to the lowest j ,  j = 1, is three-fold degenerate, 
2j + 1 = 3. The two-fold Kramers degeneracy of the lowest sheet of the APES should also 
be taken into account and therefore the ground vibronic term of the *P (23 d system under 
consideration with the spin-orbit coupling 13L * S is a six-fold degenerate vibronic 2P 
term with the same transformational properties as the initial electronic 2P term. The 
spin-orbit splitting of the ground vibronic term, as well as of the excited rotational 
energy levels, is completely quenched in this approximation. 
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Note that the case of weak spin-orbit coupling is also covered by the present inves- 
tigation. This aids understanding of the origin of the absence of the spin-orbit splitting 
of the ground 2P term in the limiting case of strong vibronic coupling. The perturbation 
analysis shows that the second-order matrix of the spin-orbit Hamiltonian calculated 
with the adiabatic wavefunctions (12) and (13) of the strong vibronic coupling equals 
zero. The spin-orbit interaction splits the ground vibronic *P term beginning from the 
third-order perturbation theory. 

4. Hindered rotations and tunnelling motions in the multimode ’T 63 ( E  + TJ problem 

The dynamic symmetry of the Jahn-Teller 2S+1T term and the possibility of internal free 
rotations provided by this symmetry occur in the high-symmetry case of the isotropic 
spin-orbit coupling, AL . S, with equal frequencies and equal Jahn-Teller stabilisation 
energies of the E and T2 modes, onE = wnT, EjT(E) = EJT(T). In real systems these 
conditions are usually violated. This lowers the symmetry of the system, providing 
warping of the APES. Alternating minima and saddle points occur along the bottom of 
the trough at the lowest sheet of the APES and the above rotations become hindered. 

A quantitative description of these features of the *T 63 ( E  + zz) system can be 
performed in the same way as described by O’Brien (1969) and Bersuker and Polinger 
(1981). Violation of the high-symmetry conditions described does not cause separation 
of the rotational motion along the bottom of the trough from the other modes. Never- 
theless, such a separation of variables can be performed in the adiabatic approximation 
under the assumption that the energy intervals in the energy spectrum of the hindered 
rotations are much less than an average vibrational quantum of the radial (orthogonal 
to the trough) motions. Strictly speaking, for every impurity-phonon system one can 
find lattice vibrations, for example, in the long-wavelength region of the acoustic branch, 
with a very small vibrational quantum which is much less than the energy level spacing 
in the rotational spectrum. By taking into account the decreasing spacing of the energy 
levels of the rotational spectrum with the vibronic coupling, AE,,, - T2, V = VE = V,, 
and the smallness of the density of states of the acoustic long-wavelength phonons, the 
effects of non-adiabatic mixing of the rotational states by the acoustic phonons for 
sufficiently strong vibronic interactions can be considered, however, to be negligibly 
small (Bersuker and Polinger 1981). By averaging the Hamiltonian of the lowest sheet 
of the APES with the ground state of the radial vibrations (the fast system), one obtains 
the Hamiltonian for the angular motion along the bottom of the trough (the slow system): 

H r o t ( 8 ,  P?) = n 2 $ * / 2 I ,  + v(8, ~ l )  (20) 
where V (  8, cp) is an angular-dependent potential energy resulting from averaging of the 
lowest sheet of the APES with respect to the radial coordinates. Note that, as distinct 
from O’Brien’s case, V ( 8 ,  q )  in the present paper results from the ground eigenvalue 
of the 6 X 6 potential energy matrix of the Hamiltonian (7) including the spin-orbit 
coupling. The function V ( 8 ,  cp) corresponds to the cubic symmetry of the system and is 
an invariant of the cubic group. As in O’Brien’s (1969) work, this function can be 
expanded in a series with respect to cubic harmonics and, if the effect of warping is not 
very strong, one can limit the expansion to the first non-trivial terms (in the same manner 
as that of O’Brien (1969)): 

~ ( 8 ,  cp) -EJT + ~ { y , , o ( 8 ,  cp) + CP> + y4.-4(o,97)11 (21) 
where EJT is the energy gain at the bottom of the trough. O’Brien (1969) showed that 
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the approximate potential energy function represented by the right-hand side of (21) 
has the same extremum points as the exact one, V ( 6 , q ) .  Taking into account the higher 
terms of the expansion (21) provides the possibility to consider the case when the 
orthorhombic points are absolute minima (Lister and O’Brien 1984). 

Note that the Hamiltonian (20) with the potential energy (21) was obtained under 
the assumption that the symmetry of the system under consideration is cubic. It results 
from the rotational symmetry. If any one of the three conditions ( w E  = wT, 
4V; = 3V$ or I f s ,  = AL - S )  is violated, the rotational symmetry reduces to the cubic 
symmetry. Hence, the Hamiltonian (20) with the potential energy (21) is appropriate to 
the general case of a 2T term coupled to E and T2 vibrations including the spin-orbit 
interaction. 

Taking into account the above quantisation rules for the angular momentum (a 3), 
the energy spectrum of hindered rotations in the ’T €3 ( E  + t2 )  case should be quali- 
tatively the same as in figure 2 of the paper by O’Brien (1969). The only difference is the 
degeneracy of each level of the 2T 8 ( E  + z2) system caused by the Kramers’ degeneracy 
of the sheets of the APES. The spin-orbit splitting of the vibronic energy levels is 
completely quenched under the approximations used in the present work. However, 
this effect cannot be considered to be a result of the vibronic reduction of the orbital 
angular momentum because the spin-orbit interaction is supposed to be sufficiently 
strong and cannot be taken into account by the usual perturbation theory within the 
limits of which the vibronic reduction factors are usually introduced (Ham 1965). As 
found by O’Brien (1969), at large positive values of A the nuclear motion is localised at 
the bottom of the four trigonal minima of the APES and the tunnelling splitting of the 
ground term results in the vibronic energy levels 2T, and 2A2 being separated by a small 
energy gap. The latter is supposed to be larger than the spin-orbit splitting of the ground 
*TI term. 

At  large negative values of A the nuclear motion is localised at tetragonal minima 
and the tunnelling transitions in this case are forbidden by some symmetry restrictions 
(Martinenas and Dagis 1969). Therefore for large negative A the orbital degeneracy of 
each vibronic energy level is a multiple of three. 

5 .  Discussion 

The considered internal rotations in the point-defect system with a ’T term coupled to 
E and T2 vibrations can be interpreted as a hindered motion of a multiphonon formation 
of the polaron type around the point defect in the crystal. 

The results of the present work allow some conclusions to be made about the 
characteristic energy level scheme of the 2T €3 ( E  + t2) system in the limiting case of 
strong vibronic coupling. Due to the Jahn-Teller effect and spin-orbit interaction, the 
2T term is split into three Kramers doublets at an arbitrary point in the space of the 
nuclear distortions representing the three sheets of the APES. At the bottom of the trough 
the ground electronic term is adjointed by a phonon continuous spectrum corresponding 
to internal vibrations of the polaron formation. The phonon density of these vibrations 
in the trigonal points of the trough of the multimode 2T 8 ( E  + t2) system was inves- 
tigated by Polinger and Boldyrev (1986). There were shown to be some new local and 
pseudo-local resonances caused by an additional defect of the force constants produced 
by the Jahn-Teller effect. Qualitatively we have here the same picture as in the multi- 
mode E @ E case (Bersuker and Polinger 1981). 
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The harmonic expansion of the adiabatic potential energy of the nuclei with respect 
to small nuclear displacements from the point of the trigonal minimum used by Polinger 
and Boldyrev (1986) is justified when a large number of radial vibrations (orthogonal to 
the angular variables of the trough, 8 and c p )  determine the continuous energy spectrum. 
At the same time the internal hindered rotations along the trough are reduced to small 
vibrations at the minimum. This is a very ideal approximation. In the present work the 
angular motion is separated and considered in a more consistent way. It was shown in 
§ 4 that the angular motion may be reduced to a small vibration at the bottom of the 
minimum only in the limiting case of very large potential barriers when tunnelling can 
be neglected. Otherwise the character of the angular motion is much more complicated. 
In this sense the present paper fills a gap which was left in our previous work (Polinger 
and Boldyrev 1986). For an adequate interpretation of the experimental data the present 
work should be used together with our previous paper because they complement one 
another. 

In the earlier paper (Polinger and Boldyrev 1486) it was also shown that the lower the 
phonon energy, the lower the vibrational density in the low-frequency region (tending to 
zero as w + 0). This feature is well known for the usual cases of the acoustic phonon 
branches. The same was proved to be the case when considering the strong Jahn-Teller 
effect. This justifies the adiabatic separation of the angular motion along the trough 
from all the other nuclear motions, the latter being reduced to vibrations. The ground 
vibrational energy level is accompanied by a fine structure of the energy spectrum 
appropriate to the hindered rotations of the polaron around the point defect of the 
crystal. If the vibronic coupling is large enough, the energy gaps in this rotational 
spectrum are very small and the fine structure occurs in the weak background, low- 
frequency region of the vibrational density. It follows that the stronger the vibronic 
coupling, the less is the rotational quantum and the less is the probability of radiationless 
dissipation of the rotational energy into the phonon continuum, because this probability 
is proportional to the phonon density at the appropriate resonant frequency (cf the 
multimode E 8 E case investigated by Bersuker and Polinger (1981)). In other words, 
the stronger the vibronic coupling, the narrower the rotational spectral lines are, the 
latter corresponding to O’Brien’s energy spectrum determined by the Hamiltonian (20) 
with the potential energy (21). 

Hence, for a strongly coupled 2T term an experimental spectrum can be obtained 
that is consistent with a value of A of (21) with some omissions caused by the selection 
rules. The experimental spectral lines can be attributed therefore to the energy levels of 
O’Brien’s (1969) figure 2 by an appropriate fit of A ,  

The rotational spectral lines are broadened by the non-adiabatic coupling of the slow 
angular motion to the fast radial vibrations. This coupling is stronger for a greater 
background of the phonon density of states. Hence, if the rotational spectral lines occur 
in the low-energy range of the spectrum they are narrow and clearly resolved from the 
background. The larger the rotational energy, the higher the energy range of the 
spectrum, so the corresponding rotational spectral lines are broader. In real cases the 
rotational structure can be observed at energies less than half of the energy of the Debye 
phonon. 

To explain the experimental data on the spectral manifestations of the Jahn-Teller 
effect in impurities, the so called cluster (quasi-molecular) model is usually used. The 
Jahn-Teller Hamiltonian of such a model system is diagonalised numerically and an 
attempt is made to assign the vibronic energy levels of the discrete energy spectrum of 
this model system to the experimental resonances in absorption, luminescence or Raman 
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scattering of light in the continuous spectrum of the real impurity system. The present 
work allows us to conclude that such an assignment is not possible for every energy level 
of the discrete energy spectrum and not for every case. If the APES of the system allows 
separation of the internal hindered rotations, then the appropriate rotational spectrum 
can be assigned to some of the experimental spectral lines as mentioned above. At  the 
same time, the discrete energy levels of the model system related to radial vibrations 
have nothing in common with the continuous spectrum of the real impurity system. Note 
that such a possibility, to separate vibronic states obtained numerically into rotational 
and vibrational manifolds, is dubious. Therefore, to compare the theory with exper- 
imental data for the 'T-term systems (as well as for the IT-term case), it is more correct 
to use O'Brien's (1969) energy level scheme of hindered rotations which does not contain 
the vibration energy levels. 

These results can be used for a detailed interpretation of a number of point defects 
in cubic crystals in their 2T electronic states when the vibronic coupling is strong enough. 
Thus, for example, in addition to the results of Polinger and Boldyrev (1986) the splitting 
of the zero-phonon line of the 2E + 'T, luminescence in the Cu2+ : ZnS impurity system 
observed by Maier and Scherz (1974) can be explained as a manifestation of the tun- 
nelling splitting of the ground vibronic energy level with an energy gap of 14cm-' 
between the ground 'T2 and nearest excited 2A, vibronic terms. 

The Jahn-Teller effect for the cases of 3T, 4T and 5T electronic terms within the 
approximations used above needs a special consideration of the pseudodegenerate 
sheets of the APES at the minimum points and a special investigation of the quantisation 
rules for angular momenta different from that of the 'T term. 
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